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Nematic order director fluctuations in cylindrical capillaries
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Order director fluctuations in a nematic liquid crystal confined to cylindrical cavity are studied within the
framework of the Frank elastic theory. In particular, eigenmodes of director fluctuations around the planar
radial structure, characterized by a disclination line along the symmetry axis of the cylinder, are analyzed for
K11# K,,# Kss. The disclination line is modeled by a concentric cylindrical core; its relevant properties are
described by radius, anchoring strength, and surface rotational viscosity. The eigenmodes turn out to have a
peculiar phase-shifted geometrical character. The main features of the spectrum of fluctuations’ eigenmodes,
typical for the spectra of coupled excitations, are determined by the radial symmetry of the structure. The
results of an eigenmode-based stability analysis with respect to the escape in the axial direction are in quali-
tative agreement with the phase diagram, obtained by comparison of the free energies of the planar and escaped
radial structures.S1063-651X96)07508-3

PACS numbsgfs): 61.30.Cz, 61.30.Jf

I. INTRODUCTION However, the characteristic time scale of the velocity field is
In bulk liquid crystals, the eigenmodes of order directormUCh shorter than the typical time of reorientation of the

fluctuations have been discussed quite thoroughly years agfgf[?c?r/ﬁ%ldkp‘.s ‘:’EOWT th de Getnnesthan?lj P'[q?j’ their
[1]. The problem has been studied in detail in planar geom—a lo Kpl7” (K is the elastic constan the density, andy

etry both theoretically and experimentally, where nuc:learIhe rotational viscosity of the nematic liquid crysta of the

magnetic resonance and various optical techniques are paq[der 0.01. Therefore the velocity field can be adiabatically

ticularly importan2—8|, but attempts to analyze this collec- _eliminated from_ the dyna_mics of a liquid crystalline system,
tive phenomenon in curved geometries are only recen\l';issl:rglstijt(;nce being taken into account by a rescaled rotational
o Tlhzg. main aim of the study is to broaden the understandin In.this approximation, the evolution of a nematic; director
of the dynamics of director fluctuations in the presence of th ?Id n the bulk is governed by the Landau-Khalatnikov-type
disclination line. The paper focuses on cylindrical geometrydlfoSIOn law[15]

with homeotropic boundary conditions, dealing in particular an(r,t)
with two problems: first, to determine the eigenmodes of 7 =h(r,t), @
order director fluctuations in a planar radial structure for
K11# K,o#Ksz and their spectrum, and, second, to model
the coupling of the disclination line and the director fluctua-

ot

where 7 is the rotational viscosity ank(r,t) is the molecu-

tions. lar field, defined as a sum of splay, twist, and bend parts
Linear theory of order director fluctuations in the cylin- _

drical cavity with a planar radial director field is set up h=K1,V(V-n) =Kol AVXn+VX(An)]

within the framework of Frank theory of liquid crystalline +Kad BX(VXN)+VX(nXB)]. )

elasticity. The core of the disclination line is represented by

a concentric cylinder, characterized by radius, anchoring;ouowing de Gennes and Proft5], A=n.(Vxn) and

strength, and surface rotational viscodi®y13,14. In order B=nx(VXn): h=h(r,t) and n=n(r,t). The divergence

to reduce the number of parameters of the model and 19, s are not taken into account i-ﬁ-,lsz Ka=0.

simplify the analysis, the outer, solid boundary is assumed t0" g e the equilibrium configuration is determined by the

impose strong homeotropic anchoring and hydrodynamic deéondition no(N|ho(r), the above equations define the mo-

grees of freedom are neglected._ . ._lecular field only within an additive Lagrange multiplier
In the next section relevant principles of nematodynamics (r,t)n(r,t). But since the nematic director is a unit vector,

are su.mmarized gnd the analytical part of the eigenmod s temporal evolution is limited to rotation, i.ein/dtLn.
analysis is described. The general features of the eigenris restriction implies that '
e

modes’ spectrum are presented in Sec. lll. In Sec. IV th
stability limit of the planar radial structure is discussed. The

results of the study are recapitulated in Sec. V. p(r)==h(r,t)-n(r,t). ®)
Il. DIRECTOR DYNAMICS Similarly, the orientation of the nematic liquid crystal at
the boundary i) changes according to
A. Principles
A complete macroscopic description of a liquid crystal- ang(r,t)

line state should incorporate both velocity and director field. KT =gr.b), @
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where 75 is the surface rotational viscosity agér,t) is the
surface molecular fielftL6]. Now the surface molecular field
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B. Eigenmodes of order director fluctuations

The planar radial structure is the simplest equilibrium

depends on both elastic torques and the interaction betwegmatic configuration in cylindrical geometry with homeo-

the liquid crystal and the confining materi@ (which de-
pends on the angle betweeg and an easy axif

g=K11K(V - ng) =Kk X (Agng) + K3k X (ngX Bg) + 9N|(15)

wherek is the normal of the boundanAs=ng-(VXng),
Bs=ngX (VXng), g=9(r,t), ng=ng(r,t), and
dG(ns;!)

ang

Oni= (6)

For example, if the anchoring is homeotrople=k) and if

tropic boundary conditions. Using cylindrical coordinates, its
director field is described by

n0: € (8)

if e, coincides with the symmetry axis of the cylinder. In the
center of the capillary there is a disclination line with isotro-
pic (or, more precisely, biaxidl17]) phase, which is ener-
getically more favorable than the nematic phase with a di-
verging splay free energy densifg3]. Up to linear terms,
the perturbed director field is given by

the anchoring free energy is of the Rapini-Papoular form

[G(ns;k)=3W(nx k)2, whereW is the anchoring strength

Oni= WK X (ngXK). (7)

n(r,t)=ng+&(r,t)=e+P(r,t)e,+A(r,t)e,, (9

Again, Eq.(5) defines the surface molecular field only within whereP(r,t) andA(r,t) [P(r,t),A(r,t)<<1] are planar and

the transformationg(r,t) —g(r,t) +u'(r,t)ny(r,t), where
u'(r,t) is fixed by the conditioring/dtL ng.

- 11
#? Kgz d  Ki—Kg
alp SIS A
o - (K33ar2 roor re
kL K Ky
_A_ Bz ¢ oo r?

whereP=P(r,t) andA=A(r,t). If K;1, Ky, andKgg are

Ky 92 92
r? (9(,02

axial component of the director, respectively.
According to the preceding subsection, in the bulk

0

Ky 02 K 92
r2 (9@2 22(922

Ki—Kgp 2

r Jdpdz
Ki—Kgp 2

r dpdz

P+

(10

A+

+Kllﬁ

Kjj~10"* N andr, is probably equal to few molecular

equal, the equation reduces to the one obtained using orengths, say,~10 8 m [20]. Thus it is reasonable to set

elastic constant approximatigal], as it should.

W=0 for the surface of the disclination line. In the follow-

The boundary conditions depend on the type of anchoring, W=0 unless indicated otherwise.
ing. In order to reduce the number of parameters of the According to Eqs(10)—(12) the radial component of the

model, the wall of the capillary, located et R, is assumed
to induce strong homeotropic anchoring. Therefore

P(r=R)=A(r=R)=0. 11

For an isotropic Rapini-Papoular model of homeotropic an
choring, the boundary condition at the cylindrical surface of

the core of the disclination with=r, turns out to be

- 0
Ky —K J
a| P <W+ll—33— 33—)P
NS = r ar (12)
it
w1y 9
A | e Kasgr

For a solid boundary, the anchoring strengisusually do
not exceed 10° J/m? [18]; for a nematic-isotropic interface,
W is likely to be much smaller. The term&{;—Ks3g)/r and

director field is not affected by the fluctuations, which are
restricted to the subspace spannedepyande,. Therefore
the reduced notatiofPe,+Ae,=[P,A] is used in the fol-
lowing.

The eigenmodes of Eq10) are of the relaxation type
ar,t)=6(r,0)expt/7). The spatial dependence of the
eigenmodes is determined using the usual separation of vari-
ables. The right-hand side of E(L0) is essentially a modi-
fied Laplace operator, so it is natural to seek solutions of the

form
cogme
Re(1) sinme
cosme
RA(r)[ sinmcp} [

whereRp(r) andR,(r) are the radial parts of the planar and

coKs;z
sink,;z

a(r,H~ co$<3z’

exp(—t/7), (13

sinkgz

K11/r, which have the same functional form as the two thataxial components of an eigenmode, respectively,rard an

belong to anchoring, are typically of the order £0J/m?:

integer.
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[If the planar and axial components of an eigenmode do
not depend orp andz, respectively, or vice versa, they are

not coupled and Eq(10) splits into two scalar equations. /@

These cases must be treated separately; but the procedure is

analogous to the one describgd. _— E

However, not all combinations of cog and sime for ﬁ Az
the ¢ dependence and dag and sirk;z for thez dependence g
of the planar and axial components of an eigenmode are /é
admissible. Should we separate the variables in(Eg, the e Z :
planar and the axial component must be an even and an odd J'
function of ¢, respectively, or vice versa. The same argu- -

ment applies for the dependence of these functionz.on
Therefore, one of the allowed possibilities is

FIG. 1. Schematic representation of an eigenmode withl
* Rg f(r)cosmgo coksz s andks= 7/2Az. The arrows denote the fluctuating director field and
: exp(—t/7y ), (14 the shaded area corresponds to the disclination line. Note that the
planar and axial components of an eigenmode are phase shifted
with respect top andz.

+Ry1(r)sinmg sink;z

the superscript indices indicating the sign in front of the
planar and axial component, respectlvely. '_rhough It MA% ot of elastic constants and parameters of the model of the
seem that the modes with the same relative sign of the planay.

. . .disclination line. As indicated in the figure, the magnitudes
and axial component are linearly dependent, one can €asidt the two components are generally got the sameg In order
check that théAnsaze '

to ensure the completeness of the eigenmodes, periodic

[—Rp 1 (r)cogne coksz,+ Ry 1 (r)sinme sinksz] boundary conditions in the direction are assumed.
i e The radial parts of the fluctuations’ eigenmodes are deter-
xexp(—t/t; ") (15 mined by two coupled ordinary differential equations
and d2 as d 1_a3 1 2 2 ++ + =+
—t+ = —+ ——— —m°— +A T |Rp
. L . . A2 X dx v 2~ a2k N~ |Rp;
[+Rp 1 (r)cosne coksz,—R, 1 (r)sinme sink;z]
1-a e
xXexp(—t/7y ") (16) MRy =0,

give different radial parts of planar and axial component of
the eigenmode. Thus there are four different eigenmodes of
the above type.

There are three other combinations of sines and cosines 1-a
and thus twelve more eigenmodes with the samandKks: *— ZmKRS’ii:O (18)

d> a;d 1 a
At — — + 5 — —mP— K2+ AT |REE
3dx? T x dx x% X2 i Al

+R5 5 (r)cogme sinksz, = Ry 5 (r)sinme coksz .
[+Re2(r) P Si¥s Az (1)sinme & and the boundary conditions

xexp(—t/my ),

1 d + +
e s . ((1—a3)——a3d—+a)\ Rpi =0,
[ =Rp3(r)sinme coksz, = Ry 3(r)cosme sinksz] X X 9
19
xexp(—t/t3 "), 1 d .
;—a3d—x+a)\ R;,i—=0
[=RpZ (r)sinme sinksz, =Ry 3 (r)cosng cok;z]
. atx=p and
Xexp(—t/my 7). a7
Rpi =0, Ry =0 (20)

An eigenmode in a section of the capillary is schematically

depicted in Fig. 1. At the lowermost cross section shown inatx=1. In Egs.(18)—(20) the following dimensionless vari-
the figure, the axial component of the eigenmode is identiables and parameters are introduced:

cally 0. On moving along the capillary the axial component

gradually grows while the planar component decreases and x=r/R; p=ry/R; \[ " =7R¥ 7 "Ky, 1=1,2,3,4;
vanishes at the uppermost cross section, where the axial
component reaches its maximum amplitude. The nodal lines a;=Kjj/Ky1, j=2,3; k=k3R; a=ns/nR. (21

of planar (lowermost cross sectipnand axial component

(uppermost cross sectipare mutually perpendicular. In Fig. A brief inspection of Eqs(18) shows that for eachthere

1 only a quarter of the eigenmode is shown. The radial partgre actually only two different eigenvaluas = instead of

of the planar and axial components are represented onlipur, becaus&®p " =Rp; , Ry =—R,; on one hand and
qualitatively, i.e., they do not correspond to some particulaR5 7 =Rp ", Ra; = —R,; on the other(Equivalently, one
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may choose R5=-Rp;, Ri{=Rp; and Rj;
=—Rp, Ra; =Ra; .) The whole set of solutions can
therefore be constructed using only two pairs of radial parts
of planar and axial components of an eigenmode: one corre- 400
sponds to the same and the other to the opposite signs of the ,4
coupling terms in Eqs(18). Moreover, it is evident that the
radial parts of the planar and axial components depend on
the type of ¢ and z dependence of an eigenmode only
through the signs of the coupling terms, so that the subscript |

A" 800
600

indicesi may be dropped. Thus the numerous collection of A 800
Rpi, Rai, and\ " can be reduced t®Rs, Ry, and 600F" "
A", which solve Egs(18) with the same sign of the coupling 400

terms, andRy , R, , and\~, which represent the solution in
the case of opposite signs of the coupling terms. The coupled
ordinary differential equationfEqgs. (18)—(20)] are solved
numerically using a standard relaxation algorithi8].
Generally, the eigenmodes cannot be divided into those

200

o= <

that do not contribute to splay and twist free energy, respec- * 8¢ A
tively, as in a bulk nematic liquid crystfl5] and in a radial 600F ..ot
nematic droplef12]. The only exceptions are simple eigen- 400 _ L
modes of the form 200— —
coksz cosnge 0 0
Rp(X) 0 0,RA(X) 0 10 20 30 0 10 20 30
P sinkgz ] [T sinme | | . .
with
V.6=0 FIG. 2. Parts of the spectrum far=0, a,=0.5, a;=3.5, and

p=0.01: () m=0, (b) and (c) m=1, and(d) and (¢) m=5. The
and parts of the spectrum that correspond to the same signs of the cou-
pling terms in Eqs(18) [(b) and (d)] obviously evolve from the
cosne uncoupled planar and axial branches of the=0 slice; the parts of
Re(x) sinme .0 the spectrum that corresponds to the opposite signs of the coupling
terms [(c) and (e)] are characterized by a gap, which becomes

with -V x 6=0. Obviously, the fluctuations’ eigenmodes broader and broader as is increased. Due to the gap, the density
may be classified into those of twist-bend and splay-beng' fluctuations’ eigenmodes depends on the wave veCtbe spec-
type only in certain confining geometries and not in any one?rfrzs';’o)(’f course, not limited tac<30, m=0, 1, and 5, and

A remark on the typical values of the parameters involved*

is in order:m and« should not be too large, since this would ysually used for filling with liquid crystals may well exceed
lead to deformations with very short wavelength that can nalOCR (in the case of Anopore membranBs=0.1 um and
longer be treated within the continuum model. It is not trivial L =60 wm) and sincek .y is usually not less than 10G;
to estimatemay, but kmayis of the orderR/d (whered is  may be treated as a continuous variable. Therefore, the three-
the thickness of the molecylewhich usually exceeds 100. dimensional spectrum will be represented by slices charac-
p is normally less than 0.1, while,>0.5 anda;>1 (on terized by a fixed value ah. On each slice, there are several
approaching a nematic-smectic transition from abdug, branches\*(k;m) that correspond to eigenfunctions with
and k5 diverge[20]). There is, however, little data on the different number of nodes d®z (x) andRj (x).
surface rotational viscosity, which characterizes the dynami- In Fig. 2 parts of the spectrum fam,=0.5, ag=3.5,
cal behavior of a nematic surface. A report on the measurge=0.01, anda=0 are shown. Fom=0 [Fig. 2(@] the planar
ment of this quantity was published only recenf3d] and and axial components of the eigenmodes are not coupled.
only few theoretical considerations of the relevant values of\ccording to Eq(18), the spectrum of planar modédotted
ns are available at the momef8,7,23. lines) is given by A~ (x)=\"(x=0)+ay«*, while for the
axial modeg(solid lineg A * (k) =\"(xk=0)+ 2.
The situation is more interesting whem>0. In Fig. Zb)
the spectrum o * is shown form=1. Sections ofA*’s

This section is concerned with the spectrum of the ordetvhere

Ill. SPECTRUM OF EIGENMODES

director fluctuations’ eigenmodes; the word ‘“spectrum” ma)%<x<l|RA|
stands for the dependence of the eigenvalie on the qua—|R| (22
wave vectors of the modulatiom and «. As already %<x<1lRp

mentioned, m is an integer and« is, due to periodic exceeds 1 correspond to modes with a predominant axial
boundary  conditions, a discrete real variable:component and are plotted with solid lines; parts\df's
k=0, 27R/L, 47RI/L, 67RI/L, ...Kkmax, WhereL is the with g<1 represent modes of planar character and are plot-
length of the cylinder. Since the length of the capillariested with dotted lines.
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The complete slicen=1 is shifted upward with respect to
the slicem=0. In addition, the eigenmodes are no longer
purely planar and purely axial as far=0. Roughly speak- 0.1
ing, the coupling is strongest for values othat correspond
to the intersections of the parabolas from Figg)2which is
where the character of a solution on a particular braxth 01 k=215
changes from planar to axial and vice versa. ¥

Perhaps the spectrum a&f [Fig. 2(c)] is even more in- 0.2
teresting. It consists of curves of two types, separated by a
gap: note that the number of modes depend oAt small
k, the spectrum consists of hornlike curves, while for larger 0.4
k it is composed of curves that are partly sawtoothlike and 0 0.2 0.4 0.6 0.8 1
partly parabolic. As in Fig. @), the sections of the spectrum x
that correspond to plandaxial) modes are drawn with dot-
ted (solid) line. a

For larger values of, the spectrum continues to move
upward. The general features)f and\~ remain, but, due R, 1
to stronger coupling, the spectrum is more and more de-
formed as compared to the one with=1: in Figs. Zd) and 038
2(e), the spectrum fom=5 is shown. The trend is particu-
larly apparent in the spectrum of ", where the hornlike 0.6
branches become shorter and the sawtooth curves flatten out.

The gap between the two types of branches becomes broader. 0.4 p =/:8.5

The overall characteristics of the eigenmodes’ spectrum
turn out not to depend on boundary conditions at the inner
cylinder, i.e., the radius of the disclination line, anchoring
strength, and surface rotational viscosity. It is also not unrea-
sonable to assume that they would remain the same for a
different model of coupling of the nematic liquid crystal with x
the solid boundary(Of course, the stability of the planar b
radial structure depends on these parameters. For example, if
the anchoring strength at solid boundary is decreased, the r|g. 3. Radial parts ofa) the planar andb) the axial compo-
whole spectrum is shifted downward and it may not be posihent of some of the eigenmodes with=0, a,=0.5, a;=3.5,
tive definite anymore. If so, the planar configuration is Un-,=0.01,m=1, andx=18.5,19.0,...,21.0. As increases, the radial
stable. In this case the director fluctuations around the plangart of the planar component transforms fr&j, (two nodes to
radial structure and their spectrum are not relevant anyt)noreR;1 (one nodg and further toR}, (three nodes At the same time,

What do the radial parts of the eigenmodes look like?he radial part of the axial component does not change much.
Some of them, corresponding to the same sign of the cou-
pling terms in Eq.(18), m=1 and«=18.5,19.0,...,21.0, are eigenvalues corresponding to the eigenmodes are positive. It
shown in Fig. 3. With increasing, the number of nodes of s, of course, not necessary to consider the complete set of
the radial part of the planar component changes from 2 to kigenvalues of the system: an analysis of the dependence of
and then to 3 and its amplitude decreases. At the same timthe lower limit of the spectrum on the parameters of the
the radial part of the axial component increases with respeghodel is sufficient. For the planar radial structure, such an
to the radial part of the planar component. Generally, theanalysis has already been carried out using an analytical ap-
Rp’'s andR,’s are wavelike as in Fig. 3. proach[9]. In the following, these results are verified nu-

merically and the relevant value of the anchoring strength on
the surface of the core of the disclination line is estimated.
Knowing that the lower limit of the spectrum of the eigen-

In a cylindrical capillary with strong homeotropic anchor- modes corresponds to the modes witk: «=0 [9], the prob-
ing at the walls, the nematic liquid crystal can occur in thredem is considerably simplified. In this case E(E8) are not
elementary structures: planar radial, escaped radial, and plgoupled: modes of this type are either purely planar
nar polar[23]. In addition to these, there are two more com-[ Ra(x) =0] or purely axial[ Rp(x) =0]. (Since there are no
plex structures: escaped radial with point defd@4] and  coupling terms, the superscript indices may be dropped.
planar polar with twos=1 line defectq25]. The phase dia- The former must be responsible for an in-plane bend distor-
gram has already been studied in detail by comparing th&on of the planar radial structure and the latter should desta-
free energy of these structurgk3,25,24. bilize the original configuration with respect to a kind of

On the other hand, one can determine the limit of stabilityescaped radial structure, which occurs in the same annular
of a structure using the eigenmode spectrum as well. Thgeometry as the planar one but exhibits(@completg es-
stability analysis is carried out using the positive-relaxation-cape of the director field along ttzeaxis. (It has been shown
rate criterion, which states that a structure is stable only if althat the critical value oK 55 for an in-plane bend distortion
eigenmodes of director fluctuations are damped, i.e., if albf the planar radial structure is lower than the threshold for

R, 02

0.2

IV. STABILITY OF PLANAR RADIAL STRUCTURE
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the axial bend distortioh9]: The in-plane bend distortion A 50

thus has no physical importance and it is not discussed in this "
paper at al). The escapedlike radial structure is obviously strong anchoring

not exactly equivalent to the true escaped radial configura-

tion, but in practice the differences are not crucial for small 0 50

p. On the other hand, it can be generated by applying a
continuous transformation to the planar radial structure.
Therefore, the structural transition between the two configu- -50 a=0
rations is second order.

Are there any other structures that could occur in the
phase diagram? If the=1 disclination line, located in the

center of the planar radial structure, splits into tsve3 lines -100
(which are subsequently driven apart from each other by the 0 1 2 3 4 5 6
repulsive forcg the radial configuration is transformed to a,

the planar polar structure with line defects. But the resulting

director configuration is unstable unless an external field of FIG. 4. Spectrum of the lowest axial eigenmode with
suitable strength is applied in the direction perpendicular td"=#=0, p=0.01, and completely loose anchoring at the core of
the plane of the disclination lind€5]. Finally, the true pla- the _defect line W=0). «, the dimensionless surface rotational vis-
nar polar structure—the director configuration with the twoS0Si: €quals 0, 1,'5, and 50. The lowest part of the spectrum
line defects at the confining surface—is, strictly speaking°"esPonding to strong anchoringat p is also plotted.

not compatible with the concept of strong anchoring at the

solid boundary. The phase diagram should therefore be dRlanar and true escaped radial configuration. In Fig. 5 the
vided into regions of stability of planar and escapedlike rahumerically obtained stability limits, calculated by method

dial structure only. (i) for W=0 andW— at the nematic-disclination line in-
The elementary axial modes in the planar radial structuréerface, its analytical counterpaf@, and the stability limit,
are determined by obtained by methodii) [26], are shown. The numerical re-

sults (i) are satisfactorily close to the analytical predictions
and in qualitative agreement with the stability linit). The
Ra=0 (23)  quantitative discrepancy between the predictions of methods
(i) and(ii) is attributed to the fact that the eigenmode-based
stability analysis is carried out within the annular geometry
where the true escaped radial structure does not exist: the

@ 2l +A
BHE T X dx | X2

and the boundary conditions

1

d
;_a@&"‘a)\ RAZO (24)

a,

atx=p and 4

Ra=0 (25
planar radial structure
atx=1. As it does not enter the above equations, the phase
diagram obviously does not depend ap. On the other 2
hand, in order to determine the stability limit of the planar
radial structure one must find the values of external param-
eters @3, p, anda) for which the eigenvalue of the elemen-
tary axial mode vanishes. But ¥=0, the boundary condi-
tion [Eq. (24)], and therefore the solutioR,, does not 01 0.05 0.1 015 0.2
depend ona, which indicates that the stability of the con- ' ’ ) ’ ’
figuration is independent of the values of bulk and surface p
rotational viscosity.

In Fig. 4, the relaxation rate of the elementary axial eigen- FIG. 5. Phase diagrams, corresponding to strong anchoring and
mode is s,hown as a function @, for «=0.1.5.50 and completely loose boundary condition®/&0) at the defect. Full
3 — Yy,

. . : ..__line, numerically calculated stability limit, based on the eigenmode
strong anchoring at the defect, which essentially descrlbe‘gnal sis; dashed line, analytical predicti®j; dotted line, stabilit
the limit a—o0; p is fixed to 0.01, a value that corresponds YIS, ' y P ' ' y

limit, determined by a comparison of the free energies of the planar

to submicrometer capillaries. All curves that correspond toand true escaped radial structuf26]. The escaped radial structure

a<o intersect the abscissa in the same paigd: planar g giaple at smakh,, while for largea, the planar radial configura-
radial structure is stable fax;>asc . _ - tion should be found. The numerically calculated stability limits do

As already noted, the director fluctuations destabilize the,ot depart significantly from the analytical predictions. The discrep-
planar radial structure against the escape in the axial diregmcy between stability limits, obtained by eigenmode analysis and
tion. Thus it is not unreasonable to compare the stabilityhy a comparison of the free energies, is related to the fact that the
limits of the planar radial structure, determinéd by the  former is carried out within the annular geometry, where the true
above procedure an(i) by comparing the free energies of escaped radial structure does not exist.

loose boundary conditions
strong anchoring

escaped radial structure
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stability limits (i) and(ii) correspond to the transitions of the density of modes for certain values wf and «. It would be

planar radial configuration to two similar yet different struc- interesting to see if this property of the spectrum can be
tures. On the other hand, this comparison indicates thathecked experimentally.
whenever the nematic-disclination line interaction is mod-~ o numerically obtained stability limit of the planar ra-

e e 2esent S0 SO sucture,cbtained b he cigenmoc analys, = n good
a reasonable starting point agreement with the analytlcallpred]ct.lon. The quantitative
' discrepancy between the stability limits, calculated by the
eigenmode analysis and by a comparison of the free energies
V. CONCLUSION of the planar and escaped radial structures, is related to the
] ) ] _ fact that within the present model the usual escaped configu-
In the study, eigenmodes of order director fluctuations inyation is approximated by an escaped structure with an iso-
planar radial structure in cylindrical capillary are analyzedtropiC cylindrical core.
within the Frank elastic theory. The core of the disclination  The current model of the core of the defect line, based on
line is modeled by a concentric cylinder, characterized by & concept of interface characterized by an anchoring strength
radius, an anchoring strength, and a surface rotational viscognd a surface rotational viscosity, offers a simple and
ity. It is shown both analytically and by a stability analysis strajghtforward description of the nematic-disclination line
that the anchoring strength at this interface may be set to Gqteraction. However, on approaching the center of the dis-
The eigenmodes turned out to have a peculiar, phase-shiftggination line the order parameter does not decrease discon-
geometrical character. _ _ _ _ tinuously [27]. In a future work, another model of the
The spectrum of the fluctuations’ eigenmodes is a typicahematic-disclination line interaction is planned to be exam-

example of dispersion of coupled excitations. The generahed, taking into account the spatial variation of the degree of
characteristics of the spectrum of the fluctuations’ eigender.

modes are determined by the geometry and do not depend on
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core of the disclination line, surface rotational viscosity, and
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