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Order director fluctuations in a nematic liquid crystal confined to cylindrical cavity are studied within the
framework of the Frank elastic theory. In particular, eigenmodes of director fluctuations around the planar
radial structure, characterized by a disclination line along the symmetry axis of the cylinder, are analyzed for
K11ÞK22ÞK33. The disclination line is modeled by a concentric cylindrical core; its relevant properties are
described by radius, anchoring strength, and surface rotational viscosity. The eigenmodes turn out to have a
peculiar phase-shifted geometrical character. The main features of the spectrum of fluctuations’ eigenmodes,
typical for the spectra of coupled excitations, are determined by the radial symmetry of the structure. The
results of an eigenmode-based stability analysis with respect to the escape in the axial direction are in quali-
tative agreement with the phase diagram, obtained by comparison of the free energies of the planar and escaped
radial structures.@S1063-651X~96!07508-3#

PACS number~s!: 61.30.Cz, 61.30.Jf

I. INTRODUCTION

In bulk liquid crystals, the eigenmodes of order director
fluctuations have been discussed quite thoroughly years ago
@1#. The problem has been studied in detail in planar geom-
etry both theoretically and experimentally, where nuclear
magnetic resonance and various optical techniques are par-
ticularly important@2–8#, but attempts to analyze this collec-
tive phenomenon in curved geometries are only recent
@9–12#.

The main aim of the study is to broaden the understanding
of the dynamics of director fluctuations in the presence of the
disclination line. The paper focuses on cylindrical geometry
with homeotropic boundary conditions, dealing in particular
with two problems: first, to determine the eigenmodes of
order director fluctuations in a planar radial structure for
K11ÞK22ÞK33 and their spectrum, and, second, to model
the coupling of the disclination line and the director fluctua-
tions.

Linear theory of order director fluctuations in the cylin-
drical cavity with a planar radial director field is set up
within the framework of Frank theory of liquid crystalline
elasticity. The core of the disclination line is represented by
a concentric cylinder, characterized by radius, anchoring
strength, and surface rotational viscosity@9,13,14#. In order
to reduce the number of parameters of the model and to
simplify the analysis, the outer, solid boundary is assumed to
impose strong homeotropic anchoring and hydrodynamic de-
grees of freedom are neglected.

In the next section relevant principles of nematodynamics
are summarized and the analytical part of the eigenmode
analysis is described. The general features of the eigen-
modes’ spectrum are presented in Sec. III. In Sec. IV the
stability limit of the planar radial structure is discussed. The
results of the study are recapitulated in Sec. V.

II. DIRECTOR DYNAMICS

A. Principles

A complete macroscopic description of a liquid crystal-
line state should incorporate both velocity and director field.

However, the characteristic time scale of the velocity field is
much shorter than the typical time of reorientation of the
director field. As shown by de Gennes and Prost@15#, their
ratio Kr/h2 (K is the elastic constant,r the density, andh
the rotational viscosity of the nematic liquid crystal! is of the
order 0.01. Therefore the velocity field can be adiabatically
eliminated from the dynamics of a liquid crystalline system,
its influence being taken into account by a rescaled rotational
viscosity.

In this approximation, the evolution of a nematic director
field in the bulk is governed by the Landau-Khalatnikov-type
diffusion law @15#

h
]n~r ,t !

]t
5h~r ,t !, ~1!

whereh is the rotational viscosity andh(r ,t) is the molecu-
lar field, defined as a sum of splay, twist, and bend parts

h5K11“~“•n!2K22@A“3n1“3~An!#

1K33@B3~“3n!1“3~n3B!#. ~2!

Following de Gennes and Prost@15#, A5n•(“3n) and
B5n3(“3n); h5h(r ,t) and n5n(r ,t). The divergence
terms are not taken into account, i.e.,K135K2450.

Since the equilibrium configuration is determined by the
condition n0(r )ih0(r ), the above equations define the mo-
lecular field only within an additive Lagrange multiplier
m(r ,t)n(r ,t). But since the nematic director is a unit vector,
its temporal evolution is limited to rotation, i.e.,]n/]t'n.
This restriction implies that

m~r ,t !52h~r ,t !•n~r ,t !. ~3!

Similarly, the orientation of the nematic liquid crystal at
the boundary (nS) changes according to

hS

]nS~r ,t !

]t
5g~r ,t !, ~4!
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wherehS is the surface rotational viscosity andg(r ,t) is the
surface molecular field@16#. Now the surface molecular field
depends on both elastic torques and the interaction between
the liquid crystal and the confining materialG ~which de-
pends on the angle betweennS and an easy axisl!

g5K11k~“•nS!2K22k3~ASnS!1K33k3~nS3BS!1gNI ,
~5!

where k is the normal of the boundary,AS5nS•(“3nS),
BS5nS3(“3nS), g5g(r ,t), nS5nS(r ,t), and

gNI5
]G~nS ; l!

]nS
. ~6!

For example, if the anchoring is homeotropic (l5k) and if
the anchoring free energy is of the Rapini-Papoular form
@G(nS ;k)5

1
2W(n3k)2, whereW is the anchoring strength#,

gNI5Wk3~nS3k!. ~7!

Again, Eq.~5! defines the surface molecular field only within
the transformationg(r ,t)→g(r ,t)1m8(r ,t)nX(r ,t), where
m8(r ,t) is fixed by the condition]nS /]t'nS .

B. Eigenmodes of order director fluctuations

The planar radial structure is the simplest equilibrium
nematic configuration in cylindrical geometry with homeo-
tropic boundary conditions. Using cylindrical coordinates, its
director field is described by

n05er ~8!

if ez coincides with the symmetry axis of the cylinder. In the
center of the capillary there is a disclination line with isotro-
pic ~or, more precisely, biaxial@17#! phase, which is ener-
getically more favorable than the nematic phase with a di-
verging splay free energy density@13#. Up to linear terms,
the perturbed director field is given by

n~r ,t !5n01d~r ,t !5er1P~r ,t !ew1A~r ,t !ez , ~9!

whereP(r ,t) andA(r ,t) @P(r ,t),A(r ,t)!1# are planar and
axial component of the director, respectively.

According to the preceding subsection, in the bulk
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whereP5P(r ,t) andA5A(r ,t). If K11, K22, andK33 are
equal, the equation reduces to the one obtained using one
elastic constant approximation@11#, as it should.

The boundary conditions depend on the type of anchor-
ing. In order to reduce the number of parameters of the
model, the wall of the capillary, located atr5R, is assumed
to induce strong homeotropic anchoring. Therefore

P~r5R!5A~r5R!50. ~11!

For an isotropic Rapini-Papoular model of homeotropic an-
choring, the boundary condition at the cylindrical surface of
the core of the disclination withr5r 0 turns out to be

hS

]

]t F 1

P

A
G5F 0

SW1
K112K33

r
2K33

]

]r DP
SW1

K11

r
2K33

]

]r DA G . ~12!

For a solid boundary, the anchoring strengthsW usually do
not exceed 1025 J/m2 @18#; for a nematic-isotropic interface,
W is likely to be much smaller. The terms (K112K33)/r and
K11/r , which have the same functional form as the two that
belong to anchoring, are typically of the order 1023 J/m2:

Kj j;10211 N and r 0 is probably equal to few molecular
lengths, say,;1028 m @20#. Thus it is reasonable to set
W50 for the surface of the disclination line. In the follow-
ing,W50 unless indicated otherwise.

According to Eqs.~10!–~12! the radial component of the
director field is not affected by the fluctuations, which are
restricted to the subspace spanned byew andez . Therefore
the reduced notationPew1Aez[@P,A# is used in the fol-
lowing.

The eigenmodes of Eq.~10! are of the relaxation type
d(r ,t)5d(r ,0)exp(2t/t). The spatial dependence of the
eigenmodes is determined using the usual separation of vari-
ables. The right-hand side of Eq.~10! is essentially a modi-
fied Laplace operator, so it is natural to seek solutions of the
form

d ~r ,t !;FRP~r !H cosmw

sinmw J H cosk3zsink3z
J

RA~r !H cosmw

sinmw J H cosk3zsink3z
J Gexp~2t/t!, ~13!

whereRP(r ) andRA(r ) are the radial parts of the planar and
axial components of an eigenmode, respectively, andm is an
integer.
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@If the planar and axial components of an eigenmode do
not depend onw andz, respectively, or vice versa, they are
not coupled and Eq.~10! splits into two scalar equations.
These cases must be treated separately; but the procedure is
analogous to the one described.#

However, not all combinations of cosmw and sinmw for
thew dependence and cosk3zand sink3z for thez dependence
of the planar and axial components of an eigenmode are
admissible. Should we separate the variables in Eq.~10!, the
planar and the axial component must be an even and an odd
function of w, respectively, or vice versa. The same argu-
ment applies for the dependence of these functions onz.
Therefore, one of the allowed possibilities is

F6RP,1
66~r !cosmw cosk3z

6RA,1
66~r !sinmw sink3z

Gexp~2t/t1
66!, ~14!

the superscript indices indicating the sign in front of the
planar and axial component, respectively. Though it may
seem that the modes with the same relative sign of the planar
and axial component are linearly dependent, one can easily
check that theAnsätze

@2RP,1
21~r !cosmw cosk3z,1RA,1

21~r !sinmw sink3z#

3exp~2t/t1
21! ~15!

and

@1RP,1
12~r !cosmw cosk3z,2RA,1

12~r !sinmw sink3z#

3exp~2t/t1
12! ~16!

give different radial parts of planar and axial component of
the eigenmode. Thus there are four different eigenmodes of
the above type.

There are three other combinations of sines and cosines
and thus twelve more eigenmodes with the samem andk3:

@6RP,2
66~r !cosmw sink3z,6RA,2

66~r !sinmw cosk3z#

3exp~2t/t2
66!,

@6RP,3
66~r !sinmw cosk3z,6RA,3

66~r !cosmw sink3z#

3exp~2t/t3
66!,

@6RP,4
66~r !sinmw sink3z,6RA,4

66~r !cosmw cosk3z#

3exp~2t/t4
66!. ~17!

An eigenmode in a section of the capillary is schematically
depicted in Fig. 1. At the lowermost cross section shown in
the figure, the axial component of the eigenmode is identi-
cally 0. On moving along the capillary the axial component
gradually grows while the planar component decreases and
vanishes at the uppermost cross section, where the axial
component reaches its maximum amplitude. The nodal lines
of planar ~lowermost cross section! and axial component
~uppermost cross section! are mutually perpendicular. In Fig.
1 only a quarter of the eigenmode is shown. The radial parts
of the planar and axial components are represented only
qualitatively, i.e., they do not correspond to some particular

set of elastic constants and parameters of the model of the
disclination line. As indicated in the figure, the magnitudes
of the two components are generally not the same. In order
to ensure the completeness of the eigenmodes, periodic
boundary conditions in thez direction are assumed.

The radial parts of the fluctuations’ eigenmodes are deter-
mined by two coupled ordinary differential equations

S a3 d2dx2
1
a3
x

d

dx
1
12a3
x2

2
1

x2
m22a2k

21l i
66DRP,i

66

6
12a2
x

mkRA,i
6650,

S a3 d2dx2
1
a3
x

d

dx
1

1

x2
2
a2
x2
m22k21l i

66DRA,i
66

6
12a2
x

mkRP,i
6650 ~18!

and the boundary conditions

S ~12a3!
1

x
2a3

d

dx
1al DRP,i

6650,

~19!

S 1x2a3
d

dx
1al DRA,i

6650

at x5r and

RP,i
6650, RA,i

6650 ~20!

at x51. In Eqs.~18!–~20! the following dimensionless vari-
ables and parameters are introduced:

x[r /R; r[r 0 /R; l i
66[hR2/t i

66K11, i51,2,3,4;

aj[Kj j /K11, j52,3; k[k3R; a[hS /hR. ~21!

A brief inspection of Eqs.~18! shows that for eachi there
are actually only two different eigenvaluesl66 instead of
four, becauseRP,i

115RP,i
22 , RA,i

1152RA,i
22 on one hand and

RP,i
125RP,i

21, RA,i
1252RA,i

21 on the other.~Equivalently, one

FIG. 1. Schematic representation of an eigenmode withm51
andks5p/2Dz. The arrows denote the fluctuating director field and
the shaded area corresponds to the disclination line. Note that the
planar and axial components of an eigenmode are phase shifted
with respect tow andz.

1594 54P. ZIHERL AND S. ŽUMER



may choose RP,i
1152RP,i

22, RA,i
115RA,i

22 and RP,i
12

52RP,i
21, RA,i

125RA,i
21 .) The whole set of solutions can

therefore be constructed using only two pairs of radial parts
of planar and axial components of an eigenmode: one corre-
sponds to the same and the other to the opposite signs of the
coupling terms in Eqs.~18!. Moreover, it is evident that the
radial parts of the planar and axial components depend on
the type of w and z dependence of an eigenmode only
through the signs of the coupling terms, so that the subscript
indices i may be dropped. Thus the numerous collection of
RP,i

66 , RA,i
66 , and l i

66 can be reduced toRP
1 , RA

1 , and
l1, which solve Eqs.~18! with the same sign of the coupling
terms, andRP

2 , RA
2 , andl2, which represent the solution in

the case of opposite signs of the coupling terms. The coupled
ordinary differential equations@Eqs. ~18!–~20!# are solved
numerically using a standard relaxation algorithm@19#.

Generally, the eigenmodes cannot be divided into those
that do not contribute to splay and twist free energy, respec-
tively, as in a bulk nematic liquid crystal@15# and in a radial
nematic droplet@12#. The only exceptions are simple eigen-
modes of the form

FRP~x!H cosk3zsink3z
J ,0G , F0,RA~x!H cosmw

sinmw J G ,
with

“•d50
and

FRP~x!H cosmw

sinmw J ,0G , F0,RA~x!H cosk3zsink3z
J G ,

with er•“3d50. Obviously, the fluctuations’ eigenmodes
may be classified into those of twist-bend and splay-bend
type only in certain confining geometries and not in any one.

A remark on the typical values of the parameters involved
is in order:m andk should not be too large, since this would
lead to deformations with very short wavelength that can no
longer be treated within the continuum model. It is not trivial
to estimatemmax, but kmax is of the orderR/d ~whered is
the thickness of the molecule!, which usually exceeds 100.

r is normally less than 0.1, whilea2.0.5 anda3.1 ~on
approaching a nematic-smectic transition from above,k22
and k33 diverge @20#!. There is, however, little data on the
surface rotational viscosity, which characterizes the dynami-
cal behavior of a nematic surface. A report on the measure-
ment of this quantity was published only recently@21# and
only few theoretical considerations of the relevant values of
hS are available at the moment@6,7,22#.

III. SPECTRUM OF EIGENMODES

This section is concerned with the spectrum of the order
director fluctuations’ eigenmodes; the word ‘‘spectrum’’
stands for the dependence of the eigenvaluel6 on the
wave vectors of the modulationm and k. As already
mentioned,m is an integer andk is, due to periodic
boundary conditions, a discrete real variable:
k50, 2pR/L, 4pR/L, 6pR/L, . . .kmax, where L is the
length of the cylinder. Since the length of the capillaries

usually used for filling with liquid crystals may well exceed
100R ~in the case of Anopore membranesR50.1 mm and
L560 mm! and sincekmax is usually not less than 100,k
may be treated as a continuous variable. Therefore, the three-
dimensional spectrum will be represented by slices charac-
terized by a fixed value ofm. On each slice, there are several
branchesl6(k;m) that correspond to eigenfunctions with
different number of nodes ofRP

6(x) andRA
6(x).

In Fig. 2 parts of the spectrum fora250.5, a353.5,
r50.01, anda50 are shown. Form50 @Fig. 2~a!# the planar
and axial components of the eigenmodes are not coupled.
According to Eq.~18!, the spectrum of planar modes~dotted
lines! is given byl6(k)5l6(k50)1a2k

2, while for the
axial modes~solid lines! l6(k)5l6(k50)1k2.

The situation is more interesting whenm.0. In Fig. 2~b!
the spectrum ofl1 is shown form51. Sections ofl1’s
where

q[
maxr,x,1uRAu
maxr,x,1uRPu

~22!

exceeds 1 correspond to modes with a predominant axial
component and are plotted with solid lines; parts ofl1’s
with q,1 represent modes of planar character and are plot-
ted with dotted lines.

FIG. 2. Parts of the spectrum fora50, a250.5, a353.5, and
r50.01: ~a! m50, ~b! and ~c! m51, and ~d! and ~e! m55. The
parts of the spectrum that correspond to the same signs of the cou-
pling terms in Eqs.~18! @~b! and ~d!# obviously evolve from the
uncoupled planar and axial branches of them 50 slice; the parts of
the spectrum that corresponds to the opposite signs of the coupling
terms @~c! and ~e!# are characterized by a gap, which becomes
broader and broader asm is increased. Due to the gap, the density
of fluctuations’ eigenmodes depends on the wave vector.~The spec-
trum is, of course, not limited tok,30, m50, 1, and 5, and
l6,800.!
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The complete slicem51 is shifted upward with respect to
the slicem50. In addition, the eigenmodes are no longer
purely planar and purely axial as form50. Roughly speak-
ing, the coupling is strongest for values ofk that correspond
to the intersections of the parabolas from Fig. 2~a!, which is
where the character of a solution on a particular branchl1

changes from planar to axial and vice versa.
Perhaps the spectrum ofl2 @Fig. 2~c!# is even more in-

teresting. It consists of curves of two types, separated by a
gap: note that the number of modes depends onk. At small
k, the spectrum consists of hornlike curves, while for larger
k it is composed of curves that are partly sawtoothlike and
partly parabolic. As in Fig. 2~b!, the sections of the spectrum
that correspond to planar~axial! modes are drawn with dot-
ted ~solid! line.

For larger values ofm, the spectrum continues to move
upward. The general features ofl1 andl2 remain, but, due
to stronger coupling, the spectrum is more and more de-
formed as compared to the one withm51: in Figs. 2~d! and
2~e!, the spectrum form55 is shown. The trend is particu-
larly apparent in the spectrum ofl2, where the hornlike
branches become shorter and the sawtooth curves flatten out.
The gap between the two types of branches becomes broader.

The overall characteristics of the eigenmodes’ spectrum
turn out not to depend on boundary conditions at the inner
cylinder, i.e., the radius of the disclination line, anchoring
strength, and surface rotational viscosity. It is also not unrea-
sonable to assume that they would remain the same for a
different model of coupling of the nematic liquid crystal with
the solid boundary.~Of course, the stability of the planar
radial structure depends on these parameters. For example, if
the anchoring strength at solid boundary is decreased, the
whole spectrum is shifted downward and it may not be posi-
tive definite anymore. If so, the planar configuration is un-
stable. In this case the director fluctuations around the planar
radial structure and their spectrum are not relevant anymore.!

What do the radial parts of the eigenmodes look like?
Some of them, corresponding to the same sign of the cou-
pling terms in Eq.~18!, m51 andk518.5,19.0,...,21.0, are
shown in Fig. 3. With increasingk, the number of nodes of
the radial part of the planar component changes from 2 to 1
and then to 3 and its amplitude decreases. At the same time,
the radial part of the axial component increases with respect
to the radial part of the planar component. Generally, the
RP

6’s andRA
6’s are wavelike as in Fig. 3.

IV. STABILITY OF PLANAR RADIAL STRUCTURE

In a cylindrical capillary with strong homeotropic anchor-
ing at the walls, the nematic liquid crystal can occur in three
elementary structures: planar radial, escaped radial, and pla-
nar polar@23#. In addition to these, there are two more com-
plex structures: escaped radial with point defects@24# and
planar polar with twos5 1

2 line defects@25#. The phase dia-
gram has already been studied in detail by comparing the
free energy of these structures@13,25,26#.

On the other hand, one can determine the limit of stability
of a structure using the eigenmode spectrum as well. The
stability analysis is carried out using the positive-relaxation-
rate criterion, which states that a structure is stable only if all
eigenmodes of director fluctuations are damped, i.e., if all

eigenvalues corresponding to the eigenmodes are positive. It
is, of course, not necessary to consider the complete set of
eigenvalues of the system: an analysis of the dependence of
the lower limit of the spectrum on the parameters of the
model is sufficient. For the planar radial structure, such an
analysis has already been carried out using an analytical ap-
proach @9#. In the following, these results are verified nu-
merically and the relevant value of the anchoring strength on
the surface of the core of the disclination line is estimated.

Knowing that the lower limit of the spectrum of the eigen-
modes corresponds to the modes withm5k50 @9#, the prob-
lem is considerably simplified. In this case Eqs.~18! are not
coupled: modes of this type are either purely planar
@RA(x)50# or purely axial@RP(x)50#. ~Since there are no
coupling terms, the superscript indices6 may be dropped.!
The former must be responsible for an in-plane bend distor-
tion of the planar radial structure and the latter should desta-
bilize the original configuration with respect to a kind of
escaped radial structure, which occurs in the same annular
geometry as the planar one but exhibits an~incomplete! es-
cape of the director field along thez axis.~It has been shown
that the critical value ofK33 for an in-plane bend distortion
of the planar radial structure is lower than the threshold for

FIG. 3. Radial parts of~a! the planar and~b! the axial compo-
nent of some of the eigenmodes witha50, a250.5, a353.5,
r50.01,m51, andk518.5,19.0,...,21.0. Ask increases, the radial
part of the planar component transforms fromRP2

1 ~two nodes! to
RP1

1 ~one node! and further toRP3
1 ~three nodes!. At the same time,

the radial part of the axial component does not change much.
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the axial bend distortion@9#: The in-plane bend distortion
thus has no physical importance and it is not discussed in this
paper at all.! The escapedlike radial structure is obviously
not exactly equivalent to the true escaped radial configura-
tion, but in practice the differences are not crucial for small
r. On the other hand, it can be generated by applying a
continuous transformation to the planar radial structure.
Therefore, the structural transition between the two configu-
rations is second order.

Are there any other structures that could occur in the
phase diagram? If thes51 disclination line, located in the
center of the planar radial structure, splits into twos5 1

2 lines
~which are subsequently driven apart from each other by the
repulsive force!, the radial configuration is transformed to
the planar polar structure with line defects. But the resulting
director configuration is unstable unless an external field of
suitable strength is applied in the direction perpendicular to
the plane of the disclination lines@25#. Finally, the true pla-
nar polar structure—the director configuration with the two
line defects at the confining surface—is, strictly speaking,
not compatible with the concept of strong anchoring at the
solid boundary. The phase diagram should therefore be di-
vided into regions of stability of planar and escapedlike ra-
dial structure only.

The elementary axial modes in the planar radial structure
are determined by

S a3 d2dx2
1
a3
x

d

dx
1

1

x2
1l DRA50 ~23!

and the boundary conditions

S 1x2a3
d

dx
1al DRA50 ~24!

at x5r and

RA50 ~25!

at x51. As it does not enter the above equations, the phase
diagram obviously does not depend ona2. On the other
hand, in order to determine the stability limit of the planar
radial structure one must find the values of external param-
eters (a3 , r, anda! for which the eigenvalue of the elemen-
tary axial mode vanishes. But ifl50, the boundary condi-
tion @Eq. ~24!#, and therefore the solutionRA, does not
depend ona, which indicates that the stability of the con-
figuration is independent of the values of bulk and surface
rotational viscosity.

In Fig. 4, the relaxation rate of the elementary axial eigen-
mode is shown as a function ofa3 for a50,1,5,50 and
strong anchoring at the defect, which essentially describes
the limit a→`; r is fixed to 0.01, a value that corresponds
to submicrometer capillaries. All curves that correspond to
a,` intersect the abscissa in the same pointa3c : planar
radial structure is stable fora3.a3c .

As already noted, the director fluctuations destabilize the
planar radial structure against the escape in the axial direc-
tion. Thus it is not unreasonable to compare the stability
limits of the planar radial structure, determined~i! by the
above procedure and~ii ! by comparing the free energies of

planar and true escaped radial configuration. In Fig. 5 the
numerically obtained stability limits, calculated by method
~i! for W50 andW→` at the nematic-disclination line in-
terface, its analytical counterparts@9#, and the stability limit,
obtained by method~ii ! @26#, are shown. The numerical re-
sults ~i! are satisfactorily close to the analytical predictions
and in qualitative agreement with the stability limit~ii !. The
quantitative discrepancy between the predictions of methods
~i! and ~ii ! is attributed to the fact that the eigenmode-based
stability analysis is carried out within the annular geometry
where the true escaped radial structure does not exist: the

FIG. 4. Spectrum of the lowest axial eigenmode with
m5k50, r50.01, and completely loose anchoring at the core of
the defect line (W50). a, the dimensionless surface rotational vis-
cosity, equals 0, 1, 5, and 50. The lowest part of the spectrum
corresponding to strong anchoring atx5r is also plotted.

FIG. 5. Phase diagrams, corresponding to strong anchoring and
completely loose boundary conditions (W50) at the defect. Full
line, numerically calculated stability limit, based on the eigenmode
analysis; dashed line, analytical prediction@9#; dotted line, stability
limit, determined by a comparison of the free energies of the planar
and true escaped radial structures@26#. The escaped radial structure
is stable at smalla3, while for largea3 the planar radial configura-
tion should be found. The numerically calculated stability limits do
not depart significantly from the analytical predictions. The discrep-
ancy between stability limits, obtained by eigenmode analysis and
by a comparison of the free energies, is related to the fact that the
former is carried out within the annular geometry, where the true
escaped radial structure does not exist.
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stability limits ~i! and~ii ! correspond to the transitions of the
planar radial configuration to two similar yet different struc-
tures. On the other hand, this comparison indicates that
whenever the nematic-disclination line interaction is mod-
eled by a concentric cylinder as in the present study, a com-
pletely loose anchoring condition (W50! at this interface is
a reasonable starting point.

V. CONCLUSION

In the study, eigenmodes of order director fluctuations in
planar radial structure in cylindrical capillary are analyzed
within the Frank elastic theory. The core of the disclination
line is modeled by a concentric cylinder, characterized by a
radius, an anchoring strength, and a surface rotational viscos-
ity. It is shown both analytically and by a stability analysis
that the anchoring strength at this interface may be set to 0.
The eigenmodes turned out to have a peculiar, phase-shifted
geometrical character.

The spectrum of the fluctuations’ eigenmodes is a typical
example of dispersion of coupled excitations. The general
characteristics of the spectrum of the fluctuations’ eigen-
modes are determined by the geometry and do not depend on
details of the model of the disclination line~radius of the
core of the disclination line, surface rotational viscosity, and
anchoring strength!: for example, the spectrum correspond-
ing to strong anchoring at the defect is very similar to the
one discussed. There is a specific feature of the spectrum of
the fluctuations’ eigenmodes: a gap, and therefore a reduced

density of modes for certain values ofm andk. It would be
interesting to see if this property of the spectrum can be
checked experimentally.

The numerically obtained stability limit of the planar ra-
dial structure, obtained by the eigenmode analysis, is in good
agreement with the analytical prediction. The quantitative
discrepancy between the stability limits, calculated by the
eigenmode analysis and by a comparison of the free energies
of the planar and escaped radial structures, is related to the
fact that within the present model the usual escaped configu-
ration is approximated by an escaped structure with an iso-
tropic cylindrical core.

The current model of the core of the defect line, based on
a concept of interface characterized by an anchoring strength
and a surface rotational viscosity, offers a simple and
straightforward description of the nematic-disclination line
interaction. However, on approaching the center of the dis-
clination line the order parameter does not decrease discon-
tinuously @27#. In a future work, another model of the
nematic-disclination line interaction is planned to be exam-
ined, taking into account the spatial variation of the degree of
order.
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